Joshua M. Brickman

DanStem (Interim) Executive Director

Professor of Stem Cell and Developmental Biology

Link to the Brickman Laboratory Homepage

ORCID: 0000-0003-1580-7491

Research Profile

Josh Brickman has a background in molecular biology and gene regulation. From a PhD in transcription he trained in developmental biology as a post-doctoral fellow, working in early mouse, and Xenopus, as well as cultivating embryonic stem cells as a model for developmental biology. He began his own lab with research projects bridging early development in multiple models systems with ES cells in a hybrid approach aimed at understanding conserved mechanisms of pluripotency and self renewal.

He currently seeks to understand how transcription factors regulate cell fate choice in ES cells and early embryos. More specifically, Professor Brickman’s and his group investigate the basis for transcriptional priming and commitment in ES cells and early in the specification of the endoderm lineage. They hope to understand the relevance of these priming events to stem and progenitor cell potency.

Awards and Honours

Josh Brickamn is the recipient of several personal awards and numerous grants including, a Human Frontiers Science Program (HFSP) Long Term Fellowship. Wellcome Trust Research Career Development Fellowship and MRC Senior Non Clinical Fellowship. He is also coordinator of an HFSP program grant and serves on several advisory and editorial boards.

Key Recent Discoveries

Hamilton, W.B., Mosesson, Y., Monteiro, R.S., Emdal, K.B., Knudsen, T.E., Francavilla, C., Barkai, N., Olsen, J.V. and Brickman, J.M. (2019). Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature, doi: 10.1038/s41586-019-1732-z.

Weinert, B.T., Narita, T., Satpathy, S., Srinivasan, B., Hansen, B.K., Scholz, C., Hamilton, W.B., Zucconi, B.E., Wang, W.W., Liu, W.R., Brickman, J.M., Kesicki, E.A., Lai, A., Bromberg, K.D., Cole, P.A., and Choudhary, C. (2018). Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome. Cell 174, 231-244.e212, doi:10.1016/j.cell.2018.04.033.

Anderson, K.G.V., Hamilton, W.B., Roske, F.V., Azad, A., Knudsen, T.E., Canham, M.A., Forrester, L.M., and Brickman, J.M. (2017). Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm. Nature Cell Biology 19, 1164-1177, doi:10.1038/ncb3617.

Nissen, S.B., Perera, M., Gonzalez, J.M., Morgani, S.M., Jensen, M.H., Sneppen, K., Brickman, J.M.*, and Trusina, A.* (2017). Four simple rules that are sufficient to generate the mammalian blastocyst. PLoS Biol 15, e2000737, doi:10.1371/journal.pbio.2000737.  *joint senior author

Migueles, R.P., Shaw, L., Rodrigues, N.P., May, G., Henseleit, K., Anderson, K.G., Goker, H., Jones, C.M., de Bruijn, M.F., Brickman, J.M., and Enver, T. (2017). Transcriptional regulation of Hhex in hematopoiesis and hematopoietic stem cell ontogeny. Developmental Biology 424, 236-245, doi:10.1016/j.ydbio.2016.12.021.

Illingworth, R.S., Hölzenspies, J.J., Roske, F.V., Bickmore, W.A., and Brickman, J.M. (2016). Polycomb enables primitive endoderm lineage priming in embryonic stem cells. Elife 5, doi:10.7554/eLife.14926.

Martin Gonzalez, J., Morgani, S.M., Bone, R.A., Bonderup, K., Abelchian, S., Brakebusch, C., and Brickman, J.M. (2016). Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports 7, 177-191, doi:10.1016/j.stemcr.2016.07.009.