Agnete Kirkeby

Associate Professor of Stem Cell Biology

Link to the Kirkeby Laboratory Homepage

Research Profile

Agnete Kirkeby has founded her research on applying human pluripotent stem cells to generate subtype-specific neural cells for developmental studies and regenerative therapy. During her time at Lund University, Agnete has been heavily involved in developing protocols for producing dopaminergic progenitor cells as a cell therapy for Parkinson’s Disease patients – a project which is currently in translation to the clinic. Moreover, Agnete has focused on producing novel tools for studying human neural development through modelling of neural tube patterning with microfluidic morphogenic gradients. The main focus of Agnete Kirkeby’s group is to use these 3D in vitro models of human brain development to map and understand human neural subtype specification and maturation.

Curriculum Vitae

2017:  Group leader, Associate Prof., Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen

2015-2017: Group leader, Research Scientist, Medical Faculty, Lund University, Sweden

2009-2015: Postdoc/Research scientist, Lund University, Dept. Developmental and Regenerative Neurobiology. (Malin Parmar group), Lund University, Sweden

2006-2009: Ph.D in Neurobiology, Performed at Sloan Kettering Institute, New York and H. Lundbeck A/S. Title: Studying the effects of low oxygen on stem cells. PhD Institution: Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Supervisors: Prof. Jan Sap and Dr. Lorenz Studer. Doctoral degree obtained Sept. 2009. 

2003-2006: MSc in Human Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Masters project performed at H. Lundbeck A/S.

2000-2003: BSc in Biochemistry, Faculty of Science, University of Copenhagen, Denmark 

Selected publications

Nolbrant, S., Heuer, A., Parmar, M., and Kirkeby, A. (2017). Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nature Protocols 12, 1962-1979, doi:10.1038/nprot.2017.078.

Kirkeby, A., Nolbrant, S., Tiklova, K., Heuer, A., Kee, N., Cardoso, T., Ottosson, D.R., Lelos, M.J., Rifes, P., Dunnett, S.B., Grealish, S., Perlmann, T., and Parmar, M. (2017). Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell 20, 135-148, doi:10.1016/j.stem.2016.09.004.

Kee, N., Volakakis, N., Kirkeby, A., Dahl, L., Storvall, H., Nolbrant, S., Lahti, L., Björklund, Å.K., Gillberg, L., Joodmardi, E., Sandberg, R., Parmar, M., and Perlmann, T. (2017). Single-Cell Analysis Reveals a Close Relationship between Differentiating Dopamine and Subthalamic Nucleus Neuronal Lineages. Cell Stem Cell 20, 29-40, doi:10.1016/j.stem.2016.10.003.

Kirkeby, A., Parmar, M., and Barker, R.A. (2017). Strategies for bringing stem cell-derived dopamine neurons to the clinic: A European approach (STEM-PD). Progress in Brain Research, book series: Functional Neural Transplantation – IV, Elsevier, doi: 10.1016/bs.pbr.2016.11.011.

Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., Van Camp, N., Perrier, A.L., Hantraye, P., Björklund, A., and Parmar, M. (2014). Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when grafted in a Rat Model of Parkinson’s Disease. Cell Stem Cell 15, 653-665, doi:10.1016/j.stem.2014.09.017.

Kirkeby, A., Grealish, S., Wolf, D.A., Nelander, J., Wood, J., Lundblad, M., Lindvall, O., and Parmar, M. (2012). Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports 1, 703-714, doi:10.1016/j.celrep.2012.04.009

Pfisterer, U.*, Kirkeby*, A., Torper*, O., Wood, J., Nelander, J., Dufour, A., Björklund, A., Lindvall, O.,  Jakobsson, J., and Parmar, M. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences 108, 10343-10348, doi:10.1073/pnas.1105135108. *contributed equally